Introduction to Cosmology: Problems of the Big bang Theory

Since the Big Bang theory of Cosmology is so commonly accepted it is important that suitable scientific scrutiny is focussed on this theory.
Here we consider the old big bang problems (of the singularity, smoothness, horizon, and flatness) and the failed solutions of inflation theory; newer Big Bang problems relating to missing mass (as required for a flat inflationary universe), the age of the universe, radiation from the "decoupling" ("smearing" of black body spectrum), Big Bang chronology, the abundance of light elements, and red shift anomalies; and problems, newer yet, regarding inconsistencies of red shift interpretation, curved space, inflation theory, the decelerating expansion of a Big Bang universe, and some additional logical inconsistencies of Big Bang theory.

In one of its several variations the big bang cosmological theory is almost universally accepted as the most reasonable theory for the origin and evolution of the universe. In fact, it is so well accepted that virtually every media article, story or program that touches on the subjects of astronomy or cosmology presents the big bang (Big Bang) as a virtual proven fact. As a result, the great majority of the literate populace of the world, including most of the scientists of the world, accepts big bang theory (Big Bang Theory) as scientific fact.

Education establishments involved in the fields of astronomy, astrophysics, theoretical physics and cosmology are dominated by those who have accepted Big Bang as the theory to be pursued. Scientists who seriously question the Big Bang are generally considered disruptive, ridiculed and derogatorily referred to as big bang bashers.

As a result of that attitude alternate cosmological possibilities are left uninvestigated. Untold man-hours and vast sums of money are spent in pursuit of data in support of the prevailing theory. Such endeavors are not in keeping with the ideals of impartial scientific investigation. It is all but forgotten that the Big Bang is not fact, but an unproven theory.

Fortunately there long has been an unindoctrinated minority of scientists, both amateur and professional, who continue to discover and present observational evidence and logic that provides reason to doubt the accepted paradigm. Some of better known and most effective of the scientists in this struggle are Halton Arp of the Max Planck Institute for Astrophysics in Germany, Anthony Peratt of the Los Alamos National Laboratories, and Jayant Narlikar of the Centre for Astronomy and Astrophysics in India. Other well known astronomers/cosmologists who have long fought for the proper consideration of alternate cosmologies include Geoffrey and Margaret Burbridge, Fred Hoyle, Herman Bondi, Thomas Gold and Eric Lerner.
Due to the efforts of those and other fighters for even-handed cosmological investigation and, despite the powerful influence of mainstream Big Bang cosmologists, evidence against the Big Bang has been building to the point where the world may soon start to doubt it.


The oldest and perhaps best known problem of Big Bang Theory is that of the singularity. At the first instant of the Big Bang universe, in which its density and temperature were infinitely high, is what is known to mathematicians as a singularity. That situation is considered to be a breakdown of theory. That is, it cannot be assumed that the laws of physics as we know them can apply to that event, thus presenting serious questions about it.
In addition, the postulated creation of the entire mass and energy of the universe out of nothing in the first instant of time, seems to represent an extreme violation of the law of conservation of mass/energy.
According to prevailing theory, before that instant, space and time did not exist. Although to some, who confuse their religious ideas with science, this is seen as a reasonable interpretation of their religious beliefs, to others the beginning of space and time might represent a significant problem.

If there were a Big Bang, it would seem that events during the first instant of time would involve the instantaneous acceleration of the enormous number of particles (the entire mass) of the universe to relativistic velocity; and some variations of Big Bang Theory postulate velocities well above the speed of light. Because the acceleration of even a minute particle to the speed of light requires an infinite amount of energy, the Big Bang might have required on the order of an infinity times and infinity of ergs; not to mention the additional energy that would be required to overcome the gravitational attraction of the entire mass of the universe.

It has been suggested that this singularity problem can be solved by postulating a universe of zero net energy;(2) a universe wherein the positive kinetic energy, the potential energy, and the Einsteinian equivalent energy of the mass of the universe is equal and opposite to the negative energy of gravity. Somehow, if the universe is to collapse in the future as some believe, all the energy that was expended in the birth and expansion of the Big Bang universe was only borrowed; someday to be paid back. However, that doesn't provide an adequate explanation for the source of the energy requirement described above.

It should be noted that this zero net energy explanation couldn't reasonably be postulated for other than a recollapsing universe. However, as will be discussed further on, observational evidence has all but ruled out the possibility of the collapsing Big Bang universe case, thus adding to the incredibility of zero net energy; and certainly it would seem that the positive energy of the potential, kinetic and the enormous mass equivalent energy of the of the universe must be far greater than the negative energy of its gravity. For any Big Bang universe case the postulated zero net energy idea appears to be unrealistic.
Inflation theory, (3,4) which will be discussed further on, has claimed to solve the singularity problem (and other Big Bang problems as well) but it requires an enormous quantum theory vacuum fluctuation (2) and, according to some, an enormous cosmic repulsive force to provide for a Big Bang. These are purely speculative ideas that have no known means of experimental verification.


One of the older problems of Big Bang Theory, that of its postulated large-scale smoothness of the universe, appears to be the result of what was originally a simplifying assumption (5-8) that was made to aid in the solution of Einstein's equations of general relativity on which the Big Bang is based. That apparently resulted in the establishment of smoothness as a basic tenet of Big Bang Theory; that is, the universe is isotropic (the same in all directions) and homogeneous (the same everywhere). Those ideas, combined with curved space, provide the basis for the Big Bang concepts of space expansion (rather than simple expansion of matter in space), for a "Big Bang that happened everywhere", and for a centerless universe.

However, the observed irregularities of the universe, which include vast galactic formations, (9) gigantic voids and sheets of galaxies, (10) and the "Great Wall", (11,12) that is estimated to stretch across one half billion light years of space, tend to deny that smoothness.
The smoothness of the distribution of the matter of the universe is said to be verified by the smoothness of microwave background radiation (MBR) that is received from all directions of space. That radiation is believed by adherents of Big Bang Theory to have come directly from a smooth Big Bang. However, it would seem that both the improbability of a smooth Big Bang explosion (explosions experienced in our time certainly are not smooth), and presently observed irregularities of the universe, tend to deny a Big Bang as the direct source of MBR.

(Regarding the plasma universe explosion postulated by Hannes Alfven, a leading advocate of Big Bang cosmology P. J. E. Peebles wrote, "It would be hard to imagine that the explosion produced a spherically symmetric expanding system of galaxies...." (13) One wonders why similar doubt is not expressed about a smooth Big Bang.)

The enormous expansion of the early universe at speeds far in excess of that of light, in accordance with inflation theory, is said to solve the Big Bang smoothness problem. However, postulating a different form of expansion doesn't change the present state of the universe, and, as will be discussed further on, it is not clear that inflation can provide an adequate explanation for the expansion of the universe at speeds far in excess of that of light.


An additional older problem of Big Bang Theory is the flatness problem. A special theory is required to explain a flat "Euclidean" Big Bang universe of uncurved space that is accepted by many mainstream cosmologists. In that universe the average density would be at a critical level, that is, at a balance between the average density of a "closed" Big Bang universe (expanding at less than escape velocity) that would eventually collapse, and the average density of an "open" Big Bang universe (expanding at greater than escape velocity) whose expansion would continue to increase, but at an ever decreasing rate. The postulated expansion of this flat Big Bang universe (just at escape velocity) would eventually cease to increase, and thereafter remain at a fixed size.
It has been postulated that a universe of zero net energy, in addition to solving the singularity problem, might solve this flatness problem. However, as mentioned above, that concept is highly suspect. Additionally, the observed low average density of the universe, probably not more than a few percent of the critical amount, appears to deny the possibility of the flat universe case.
As in the case of the previously mentioned problems, the enormous rate of expansion of the early Big Bang universe as postulated by inflation theory, is said to provide a solution to the flatness problem. However, it is not clear how an enormously fast rate of expansion might result in an average density at the critical level; and the low observed density of the universe represents an especially severe problem to inflation theory. That situation has provided the incentive for a frantic search for the "missing mass" that would be necessary to increase the average density to the expectations of inflation theory.


A major problem, known as the age paradox, (16) plagues Big Bang Theory: The postulated age of the Big Bang universe may be incompatible with observations.
Despite the insistence of some Big Bang advocates on a lower value, recent observations of distant galaxies have confirmed the Hubble constant to be approximately 80 km/sec/Megaparsec (about 24.5 km/sec/million light years). (13,17) Hubble time, the age 12 billion years. The age of a flat or near flat Big Bang universe, as postulated by Big Bang theorists in recent years, would be two thirds of that, or about 8 billion years; somewhat more than that for an open Big Bang universe, and somewhat less than that for a closed Big Bang universe. That age is only about one half of the known age of some stars and galaxies, (18,19) presenting an obviously impossible situation.
Conversely, a flat Big Bang universe having an age of 15 billion years, would require a Hubble time of 22.5 billion years and a Hubble constant of about 42.2 km/sec/Mpc; little more than one half of the observed value.

Even if the age of the Big Bang universe was considerably more than 8 billion years (and the Hubble constant correspondingly smaller), there may not have been time for the formation of observed gigantic galactic configurations. The time required for those to form (due to gravity) in accordance with Big Bang Theory) has been estimated to be on the order of 100 billion years.
The heavy elements observed in the solar system, and in other stars and galaxies, require at least one previous stellar cycle. (20,21) The formation of those stars, their life time, their collapse, explosion and dispersal, and the subsequent formation of our galaxy, sun and planets might well have required a period considerably greater than 8 billion years. Because of the high probability of more than one previous stellar cycle in this process, an age of at least tens of billions of years may have been required.
Astronomical observations support a period of rotation of our galaxy of 1/4 billion years. (22,23) At that rate, if the Big Bang had occurred on the order of 10 billion years ago, there would have been time for only 40 rotations. However, astronomical theory tells us that the rate of rotation has increased from a much lower rate as the galaxy has evolved, (24) providing time for considerably less than 40 rotations. As judged by the present spiral form of the galaxy, it might be expected that an order of magnitude more revolutions, and thus an order of magnitude more that 10 billion years, may have been required for the formation of our galaxy. These comments apply to other spiral galaxies as well as our own.

Possibly adding to this age problem, there have been observations of polarization of radiation received from distant quasars indicating the presence of relatively strong magnetic fields. Some of those quasars are reckoned by Big Bang theorists to be observed as they were at less than one tenth of the age of the universe, (25) far sooner than such fields might have developed in accordance with Big Bang Theory.
On the whole it would seem that the age of the universe is more likely to be at least several tens of billions of years, rather than 10 to 15 billion years as believed by Big Bang advocates. As in the case of the missing mass problem, Big Bang age problems alone appear to provide convincing evidence against all of Big Bang Theory.
It should be noted that Big Bang theorists' estimates of the age of the universe are based on their belief in an expanding universe. That in turn is based on the accepted Doppler interpretation of red shift which, as we will see, may present additional difficulties.


The microwave background radiation (MBR), that is received uniformly from all directions of space, considered by many to be the most important evidence in support of Big Bang Theory, may be inconsistent with that theory.
In addition to the previous comment that one would expect the observed gigantic galactic formations to cause irregularities in the isotropy of MBR reception, the observed spectrum of the MBR, corresponding to a near perfect black body temperature of 2.7 K, doesn't agree very well with temperatures predicted by various Big Bang theorists. Those predictions had varied over a range of 5 to 50 K. (26) History also shows that some Big Bang cosmologists' "predictions" of MBR temperature have been "adjusted" after-the-fact to agree with observed temperatures.

The prediction of 5 K (by Ralph Alpher and Robert Herman in 1948), (27) which has been selected as a basis for agreement with the observed temperature, was made by those who had accepted a Big Bang scenario that included concepts that were incorrect. Those included the idea that all of the elements of the universe were produced in the Big Bang, which was later determined to be erroneous.
If the temperature of the universe was at absolute zero, all matter would collapse. The temperature of radiation from space might reasonably be expected to be some small number of degrees above that temperature. In fact, some physicists (including Sir Arthur Eddington in 1926 and Andrew McKeller in 1942)(28) had estimated temperatures in the range of 2 to 3 K; closer to that of the MBR than has been estimated by Big Bang cosmologists.

According to Big Bang theorists, the "decoupling era", from whence MBR is said to have originated, may have lasted at least several hundred thousand years. (29) It has occurred to me that, if radiation comes to us directly from that period, later radiation would have lower source temperature and less red shift, resulting in distortion, "smearing", (24) of the postulated black body spectrum from the decoupling. Big Bang theorists may have assumed that the temperature and red shift changes of that period would cancel; but unless the universe had linear (fixed-rate) expansion, that cancellation could not be perfect. Because Big Bang theorists believe, not in a fixed rate of expansion, but in a non-linear decelerating expansion, it would seem reasonable to suppose that a less than perfect black body spectrum might be received from the Big Bang decoupling than that which is observed.
Smearing of a black body spectrum from the decoupling would also result if the shape of the Big Bang universe were less than perfectly spherical during that period. Although Big Bang advocates believe in that smoothness, it may be difficult for others to accept an explosion of such symmetry.

If MBR from the decoupling had caused thermal equalization (thermalization) of the matter of the space that surrounds us, as other theorists have suggested, and that matter were quite remote, the large irregularities of galactic formations might be expected to cause fairly large directional variations of the MBR. If the MBR is radiated from thermalized matter relatively close to us (but perhaps outside of our galaxy), the MBR might possess the observed isotropy. However, the possibility should not be overlooked that, as the work of Eddington, McKeller and others indicates, the observed MBR may be the result of sources of
energy other than the Big Bang decoupling.

Some Big Bang cosmologists have contended that thermalization of surrounding space could not produce a spectrum so closely resembling that of black body radiation. However there is theoretical support for the existence of particles in space (called whiskers) (30-32) that in turn supports the possibility of thermalization. Physical evidence of these particles has been found in meteorites that have struck the earth. (33,34)

Further doubt about the Big Bang as a source of the MBR results from consideration of the amplitude of MBR signal strength received here on earth. Calculations indicate that the received energy may be orders of magnitude lower than would be expected from the enormous energy release of the postulated Big Bang decoupling. (24)
According to Big Bang Theory, positively curved space provides the explanation for omnidirectional reception of MBR from the decoupling. However, characteristics of the positively curved space of a closed universe cannot be ascribed to the flat or somewhat open universe that is accepted by the majority of Big Bang theorists.

As presented above, the closed Big Bang universe would seem to be ruled out by age and density considerations. But if that had not been the case, and space were positively curved as postulated for the closed Big Bang universe case, neutrinos from the Big Bang would be raining on us as well as photons. Those have not been detected. By similar reasoning, in a Big Bang universe of positively curved space, rather than being "clumped" at great distances (as they are perceived to be by the presently accepted interpretation of red shift data), quasars would be more evenly distributed in direction, distance and speed. If that were found to be true it might tend to deny one of the alleged proofs of Big Bang Theory, that of an evolving universe.

Photons [that is, electromagnetic radiation (EMR) in the infrared region] are believed to originate from the Big Bang decoupling, to be red-shifted by about 1,000, and to be received from all directions of space as MBR. According to Big Bang Theory, neutrinos are also said to originate from the Big Bang, but at a much earlier time. They, like the MBR, are believed to fill the space that surrounds us. According to quantum wave theory, although they are particles rather than EMR, they are considered to have a red shift much greater than that of Big Bang photons. Their energy is therefore too low to allow their detection: their frequency below the capability of available technology. Although neutrinos from nearby sources (from the sun and from Supernova 1987A) have been detected, the treatment of Big Bang neutrinos as waves is said to provide an explanation for the lack of their detection. However, the application of wave theory to neutrinos, but not to other particles (electrons, protons, neutrons, etc.) believed to have originated in the Big Bang at or before the time of the decoupling, appears to present a logical inconsistency.
It would seem that, upon consideration of the available evidence, rather than supporting Big Bang Theory, the presence of MBR might actually be counted against it. It seems more reasonable to postulate natural radiation from matter or energetic processes in relatively nearby space as the source of MBR.


The agreement of the observed abundance of light elements in the universe with those predicted by various Big Bang cosmologists is frequently cited as one of the primary proofs of their theory, but this proof also faces some difficulties.
The study of historical data shows that over the years predictions of the ratio of helium to hydrogen in a Big Bang universe have been repeatedly adjusted to agree with the latest available estimates of that ratio as observed in the real universe. (Human science is very fallible!) The estimated ratio is dependent on a ratio of baryons to photons (the baryon number) that has also been arbitrarily adjusted to agree with the currently established helium to hydrogen ratio. These appear to have not been predictions, but merely adjustments of theory ("retrodictions") to accommodate current data.

Big Bang cosmologists tell us that the observed ratio of helium to hydrogen in the universe could only have been the result of Big Bang thermonucleosynthesis. However, that presumes, not only a precise knowledge of the processes of a Big Bang, but a precise knowledge of the processes of other possible cosmologies. If, for example, another cosmology should suggest that helium has accumulated as a result of other processes (37,38) (such as stellar nucleosynthesis over tens of billions of years), having given other cosmological possibilities little or no consideration, on what basis might a Big Bang theorist deny that? In addition to helium, Big Bang theorists have in the past maintained that other light elements including boron, beryllium and lithium, can only have been produced by Big Bang nucleosynthesis (fusion). However, it has been found that these elements can be produced by cosmic rays acting on supernovae remnants (fission). (29) It is also possible for deuterium to have been produced by processes in the formation of galaxies, rather than in Big Bang nucleosynthesis as claimed by those theorists.
Adding to those problems, recent observations have shown that the abundance of helium is less than that indicated by standard Big Bang Theory, and that the ratios of beryllium and boron are inconsistent with that theory. (39-41)


Inconsistencies regarding the current interpretation of observed red shift present many problems to Big Bang Theory. Many of those have to do with the distant massive bodies that are called quasars.
As presently utilized, red shift data results in the perception of extremely great masses and brilliances of quasars. Variations in the level of radiation from these sources (27,42) require their size to be extremely small and their densities to be extremely great. These extreme characteristics suggest that the present interpretation of red shift data as Doppler shift doesn't tell the whole story about the speed and distance of remote massive bodies in space.

Red shift data as presently used also shows quasars to be "clumped" at great distances (great relative velocities). According to Big Bang Theory that would require the formation of large numbers of quasars too soon after the Big Bang. That interpretation of red shift data also results in the anomaly of quasars at various distances, and thus of various ages, that are observed to have similar electromagnetic spectrums.
But perhaps even in greater conflict with Big Bang Theory, the clumping of distant quasars in all directions would appear to put us at the center of the universe. That situation, known as the Copernican Problem, is in direct conflict with the basic Big Bang Theory tenet of smoothness; that is, isotropy and homogeneity.
Dependence on Doppler red shift for the determination of velocity and distance also results in the perception of an unreasonably large number of distant quasars having associated superluminal flares. (32,43) Some simple mathematics can show that, if the perceived distance of those quasars was less, fewer of such flares would be indicated. (Also, mathematical investigation of the velocity relationships between quasars perceived to be at great distances and their perceived superluminal flares, has provided unintelligible results.)

Big Bang theorists accept special relativity, and thus the application of the Lorentz transformations to the red shift of radiation from galaxies and quasars that are believe to be at great distances and receding from us at "relativistic" speeds. Those speeds are thus believed to result in red shifts that are greater than would be expected by the linear application of a Hubble constant. That would appear to be reasonable for a universe consisting of matter that is expanding as the normal result of an explosion. However, because Big Bang theorists insist that it is not the matter of the universe, but the space of the universe that is expanding, I have suggested an additional problem: Although the Lorentz transformations may apply to matter, they do not apply to massless space. It is therefore inappropriate to apply them to a Big Bang universe.

In addition to quasar related problems, there is considerable observational evidence indicating that the presently accepted interpretation of red shift data is to some degree erroneous. Observations over many years by highly regarded astronomers have shown many "companion galaxies"(27) to have considerably higher red shifts than those of unmistakably neighbouring galaxies. Most notable among those astronomers is Halton Arp, who has also provided considerable evidence that radiation from newly formed galaxies is in some manner red shifted by other than Doppler effect. (44)

Although it has long ago been ruled out by Big Bang cosmologists as an important factor, massive dense bodies, that may not be massive enough and dense enough to become black holes, may be massive enough and dense enough to cause appreciable amounts of gravitational red shift (Einstein shift)(24,49) of their radiation.
In support of this it is known, for example, that even our sun has a small gravitational red shift (z 0.000002); and it is suggested that the differences in masses and radii of stars of some binary pairs(50) may be the cause of observed differences in their average red shift.
Any of these possible causes of red shift may add to Doppler red shift (if that exists) and thus cause the appearance of greater relative speed and distance of quasars and other massive bodies in space. If that should prove to be so, problems regarding the interpretation of red shift data might be eased or eliminated.

It seems obvious that, if other causes of the red shift of radiation from massive bodies were given consideration, problems resulting from the conventional interpretation of red shift might be eased. Quasars might be found to be much closer and their velocity much lower, thus solving the perception of excessive brilliance, mass, density, large numbers of superluminal flares and other problems, including the clumping of quasars at great distances. (If red shift were found to have causes other than or in addition to Doppler effects, the velocity of distant quasars would fall on a lower, more linear portion of a plot of velocity vs. red shift that incorporates relativistic effects [as derived from the Einstein- Lorentz transformations]. The perception of clumping would thus be reduced.)
It should be pointed out that Hubble himself was not convinced that red shift was exclusively due to Doppler effect. Up to the time of his death he maintained that velocities inferred from red shift measurements should be referred to as apparent velocities. (45,51)


A new quandary, that I have called the Big Bang deceleration problem, has occurred to me. (24) If the universe is expanding and, if that expansion is decelerating due to gravitational attraction of the mass of the universe, as Big Bang theorists believe, they have not made it clear whether the expansion of space is decelerating, or whether the expansion of the matter of space is decelerating.
Most Big Bang theorists agree that, rather than the matter of space, space itself is expanding. However, if the expansion of space is decelerating, the physical law that relates the deceleration of space with gravitation has not been made clear. It would seem reasonable to expect the expansion of the matter of a Big Bang universe to be decelerating, but, if that is so, matter must have an increasing inward velocity relative to expanding space; or perhaps the expansion of both matter and space is decelerating possibly doubling the effect of gravity. A lack of clarity regarding this matter would seem to add to the difficulties of Big Bang Theory.

References (William C. Mitchell)

1. P. Davies, Superforce (Simon & Schuster, NY, 1984).
2. E. P. Tryon, Nature (14 December 1973).
3. A. H. Guth, and Paul J. Steinhardt, Sci. Am. (May 1984).
4. A. Linde, New Scientist (7 March 1985).
5. M. Rees and J. Silk, Sci. Am. (June 1970).
6. E. McMullin, Am. Philos. Quarterly (July 1881).
7. G. Gamow, Sci. Am. (March 1954).
8. J. V. Narlikar, New Scientist (2 July 1981).
9. F. Flam, Science (November 1991).
10. S. A. Gregory, and L. A. Thompson, Sci. Am. (March 1982).
11. A. Fisher, Popular Science (May 1991).
12. A. Chaikin, Omni (August 1991).
13. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, 1993).
14. D. Goldsmith, Discover (October 1992).
15. A. F. Davidsen, Science (15 January 1993).16. R. Jayawardhana, Astronomy (June 1993).
17. W. Freedman, Sci. Am. (November 1992).
18. J. R. Gott III, J. E. Gunn, D. N. Schramm and B. M. Tinsley, Sci. Am. (March 1976).
19. G. Abell, D. Morrison and S. Wolfe, Realm of the Universe (Saunders College Publishing, Philadelphia, 1988).
20. S. Gilkis, P. M. Lubin, S. S. Meyer, and R. F. Silverberg, Sci. Am. (January 1990).
21. D. Hegyi, "Interstellar Medium" in Encyclopedia of Physics, 2nd ed. (VCH Publishers, NY, 991).
22. J. Silk, The Big Bang (W. H. Freeman, NY, 1989).
23. S. van der Bergh and J. Hesser, Sci. Am. (January 1993).
24. W. C. Mitchell, The Cult of the Big Bang (Cosmic Sense Books, NV, 1995).
25. J. Boslough, Masters of Time (Addison-Wesley, Reading, MA, 1992).
26. D. Sciama, "Cosmology Before and After Quasars" in Cosmology +1 (W. H. Freeman, NY,1977).
27. H. Friedman, The Amazing Universe (The National Geographic Society, Washington, DC,1985).
28. S. G. Brush, Sci. Am. (August 1992).
29. S. Weinberg, The First Three Minutes (Basic Books, NY, 1977).
30. R. V. Coleman, "Whiskers" in Encyclopedia of Physics, 2nd ed. (VCH Publishers, NY, 1991).
31. J. Kanipe, Astronomy (April 1992).
32. H. C. Arp, G. Burbridge, J. V. Narlikar, N. C. Wickramasinghe, Nature (30 August 1990).
33. P. Yam, Sci. Am. (October 1990).
34. "Before There Was Earth, There Was Lightning" in Discover (July 1993).
35. J. D. Barrow and J. Silk, Sci. Am. (April 1980).
36. D. N. Schramm, and G. Steigman, Sci. Am. (June 1988).
37. R. Cowen, Science News (19 October 1991).
38. S. Bowyer, Sci. Am. (August 1994).
39. A. Gibbons, Sci. Am. (January 1992).
40. M. Bartusiak, Discover (August 1992).
41. J. A. Frieman, and B.-A. Gradwohl, Science (4 June 1993).
42. M. Schmidt, and F. Bello, "The Evolution of Quasars" in Cosmology + 1 (W. H. Freeman, NY, 1977).
43. C. D. Dermer, and R. Schlickeiser, Science (18 September 1992).
44. H. C. Arp, "Fitting Theory to Observation From Stars to Cosmology" in Progress in New Cosmologies: Beyond the Big Bang (Plenum Press, NY, 1993).
45. E. Hubble, Observational Approach to Cosmology, (Oxford University Press, 1937). (see also)
46. G. Reber, "Endless, Boundless, Stable Universe," in University of Tasmania Occasional Paper, (University of Tasmania,1977).
47. P. Marmet and G. Reber, IEEE Trans. on Plasma Sci. (April 1989).
48. P. Marmet, Phys. Essays 1,24, (1988).
49. P. J. E. Peebles, D. N. Schramm, E. L. Turner and R. G. Kron, Nature (29 August 1991).
50. P. Marmet, IEEE Trans. on Plasma Phys. (February 1990).
51. D. E. Osterbrock, J. A. Gwinn and R. S. Brashear, Sci. Am. (July 1993).
52. G. Gale, "Cosmological Fecundity: Theories of Multiple Universes" in Physical Cosmology and Philosophy edited by J. Leslie (Macmillan, NY, 1990)
53. B. J. Carr, Irish Astron. J. (March 1982).
54. J. A. Wheeler, "Beyond the End of Time" in C. W. Misner, K. A. Throne and J. A. Wheeler, Gravitation (W. H. Freeman, NY, 1971). (see also)
55. T. J.-L. Courvoisier, and E. I. Robson, Sci. Am. (June 1991).
56. F. Flam, Science (28 February 1992).
57. S. Flamsteed, Discover (24 June 1992).
58. Jacqueline N. Hewitt, "Gravitational Lenses" in Encyclopedia of Physics , 2nd ed. (VCH Publishers, NY, 1991).
59. A. Webster, "The Cosmic Background Radiation" in Cosmology +1 (W. H. Freeman, NY,1977).
60. A. L. Peratt, IEEE Trans. of Plasma Sci. (December 1996).
61. E. J. Lerner, The Big Bang Never Happened (Times Books, 1991).
62. H. Bondi , F. Hoyle, and T. Gold, Rival Theories of Cosmology (Oxford University Press,1960).

Editor: Haselhurst (Article edited from: Physics Essays Volume 10, Number 2, June 1997. William C. Mitchell)


Name Author No. of chapters No. of pages No. of volumes Year of Publication Type
The Electric Sky-A Challenge to the Myths of Modern Astronomy Donald E. Scott, Ph.. 18 248 1 Dec. 2006 Astrophysics for the general public


1. - On the problems of the 'Big Bang' Theory of Cosmology. Summary of three famous dissident scientists on problems of the Big Bang Theory: Eric Lerner, Bill Mitchell and Halton Arp.